
struct HUSKYLENSResult

• Description: Structure to store the blocks or arrows

• Member:

o command Use to determine whether this is arrow or block

▪ COMMAND_RETURN_BLOCK It is a block

▪ COMMAND_RETURN_ARROW It is an arrow

o For a block:

▪ xCenter X Center of Block

▪ yCenter Y Center of Block

▪ width Width of Block

▪ height Height of Block

▪ ID ID of Block, see ID Meaning below

o For an arrow:

▪ xOrigin X Origin of Arrow

▪ yOrigin Y Origin of Arrow

▪ xTarget X Target of Arrow

▪ yTarget Y Target of Arrow

▪ ID ID of Arrow, see ID Meaning below

• Example:

void printResult(HUSKYLENSResult result){
 if (result.command == COMMAND_RETURN_BLOCK){
 Serial.println(String() + F("Block:xCenter=") + result.xCenter + F(",yCenter=")
+ result.yCenter + F(",width=") + result.width + F(",height=") + result.height +
F(",ID=") + result.ID);
 }
 else if (result.command == COMMAND_RETURN_ARROW){
 Serial.println(String() + F("Arrow:xOrigin=") + result.xOrigin +
F(",yOrigin=") + result.yOrigin + F(",xTarget=") + result.xTarget + F(",yTarget=")
+ result.yTarget + F(",ID=") + result.ID);
 }
 else{
 Serial.println("Object unknown!");
 }
}

ID Meaning:

ID Means

1 The first learned item is detected

2 The second learned item is detected

XXX The XXXth learned item is detected

0 Item is detected but not learned, like unlearned faces block in grey color.

enum protocolAlgorithm

• Description: The enum of the algorithm. Needed when switch to the target

algorithm.

• Member:

o ALGORITHM_FACE_RECOGNITION FACE RECOGNITION

o ALGORITHM_OBJECT_TRACKINGOBJECT TRACKING

o ALGORITHM_OBJECT_RECOGNITION OBJECT RECOGNITION

o ALGORITHM_LINE_TRACKING LINE TRACKING

o ALGORITHM_COLOR_RECOGNITION COLOR RECOGNITION

o ALGORITHM_TAG_RECOGNITION TAG RECOGNITION

o ALGORITHM_OBJECT_CLASSIFICATION OBJECT CLASSIFICATION

bool begin(TwoWire& streamInput)

• Description: Setup procedure of HUSKYLENS with Wire(I2C). It will try connect

to HUSKYLENS and return whether HUSKYLENS is connected.

• Arguments:

o streamInput : It could be Serial, Wire, SoftwareSerial, or other port based

on Stream class.

• Returns: Whether successful connect and contact with HUSKYLENS.

bool begin(Stream& streamInput)

• Description: Setup procedure of HUSKYLENS. It will try connect to

HUSKYLENS and return whether HUSKYLENS is connected.

• Arguments:

o streamInput : It could be Serial, Wire, SoftwareSerial, or other port based

on Stream class.

• Returns: Whether successful connect and contact with HUSKYLENS.

void setTimeOutDuration(unsigned long timeOutDur

ationInput)

• Description: Use to set the time out duration on the transmit between request

and received from HUSKYLENS to avoid waiting the feedback from

HUSKYLENS for a long time. Default value is 100ms.

• Arguments:

o timeOutDurationInput : Time out duration on ms.

bool request()

• Description: Request all blocks and arrows from HUSKYLENS. This is the place

where all the transmit happens.

• Arguments: None

• Returns: Whether successfully get the result.

bool request(int16_t ID)

• Description: Request only blocks and arrows tagged with ID from

HUSKYLENS.

• Arguments:

o ID The target ID of blocks and arrows

• Returns: Whether successfully get the result.

bool requestBlocks()

• Description: Request all blocks from HUSKYLENS

• Returns: Whether successfully get the result.

bool requestBlocks(int16_t ID)

• Description: Request only blocks tagged with ID from HUSKYLENS

• Arguments:

o ID The target ID of blocks

• Returns: Whether successfully get the result..

bool requestArrows()

• Description: Request all arrows from HUSKYLENS

• Arguments:

o algorithmType The algorithm you need. See protocolAlgorithm for

details.

• Returns: Whether successfully get the result.

bool requestArrows(int16_t ID)

• Description: Request only arrows tagged with ID from HUSKYLENS

• Arguments:

o ID The target ID of arrows

• Returns: Whether successfully get the result.

bool requestLearned()

• Description: Request all learned blocks and arrows (ID >=1) from HUSKYLENS.

• Returns: Whether successfully get the result.

bool requestBlocksLearned()

• Description: Request all learned blocks (ID >=1) from HUSKYLENS.

• Returns: Whether successfully get the result.

bool requestArrowsLearned()

• Description: Request all learned arrows (ID >=1) from HUSKYLENS.

• Returns: Whether successfully get the result.

int available()

• Description: Return the count of blocks and arrows available to read. (Works

like Serial or Wire)

• Arguments: None

• Returns: The count of blocks and arrows left in the buffer.

HUSKYLENSResult read()

• Description: Read blocks or arrows.(Works like Serial or Wire)

• Returns: blocks or arrows in struct HUSKYLENSResult. See HUSKYLENSResult

above for details.

bool isLearned()

• Description: Get whether HUSKYLENS have learn something.

• Returns: Whether HUSKYLENS have learn something.

bool isLearned(int ID)

• Description: Get whether HUSKYLENS have learn something tagged with ID.

• Arguments:

o ID The target ID. See ID Meaning above for details.

• Returns: Whether HUSKYLENS have learn something tagged with ID.

int16_t frameNumber()

• Description: Get the number of frame HUSKYLENS have processed. Once

HUSKYLENS process one frame, this number will increase by one.

• Returns: The number of frame HUSKYLENS have processed.

int16_t countLearnedIDs()

• Description: Get the count of (faces, colors, objects or lines) you have learned

on HUSKYLENS. This value will depend on how many times you learn

something on HUSKYLENS.

• Returns: The count of (faces, colors, objects or lines) you have learned on

HUSKYLENS.

int16_t count()

• Description: Get count of all blocks and arrows.

• Returns: The count of all blocks and arrows.

int16_t count(int16_t ID)

• Description: Get count of all blocks and arrows tagged with ID.

• Arguments:

o ID The target ID. See ID Meaning above for details.

• Returns: The count of all blocks and arrows tagged with ID.

int16_t countBlocks()

• Description: Get count of all blocks.

• Returns: The count of all blocks.

int16_t countBlocks(int16_t ID)

• Description: Get count of all blocks tagged with ID.

• Arguments:

o ID The target ID. See ID Meaning above for details.

• Returns: The count of all blocks tagged with ID.

int16_t countArrows()

• Description: Get count of all arrows.

• Returns: The count of all blocks and arrows.

int16_t countArrows(int16_t ID)

• Description: Get count of all arrows tagged with ID.

• Arguments:

o ID The target ID. See ID Meaning above for details.

• Returns: The count of all arrows tagged with ID.

int16_t countLearned()

• Description: Get count of all learned blocks and arrows (ID >=1)

• Returns: The count of all learned blocks and arrows (ID >=1)

int16_t countBlocksLearned()

• Description: Get count of all learned blocks (ID >=1)

• Returns: The count of all learned blocks (ID >=1)

int16_t countArrowsLearned()

• Description: Get count of all learned arrows (ID >=1)

• Returns: The count of all learned arrows (ID >=1)

HUSKYLENSResult get(int16_t index)

• Description: Get one of the blocks and arrows.

• Arguments:

o index The index of blocks and arrows, which is ordered by the received

sequence. It should less than count()

• Returns: block or arrow in struct HUSKYLENSResult. See HUSKYLENSResult

above for details.

HUSKYLENSResult get(int16_t ID, int16_t index)

• Description: Get one of the blocks and arrows tagged with ID

• Arguments:

o ID The target ID. See ID Meaning above for details.

o index The index of blocks and arrows, which is ordered by the received

sequence. It should less than count(ID)

• Returns: block or arrow tagged with ID in struct HUSKYLENSResult. See

HUSKYLENSResult above for details.

HUSKYLENSResult getBlock(int16_t index)

• Description: Get one of the blocks.

• Arguments:

o index The index of blocks, which is ordered by the received sequence. It

should less than countBlocks()

• Returns: block in struct HUSKYLENSResult. See HUSKYLENSResult above for

details.

HUSKYLENSResult getBlock(int16_t ID, int16_t index)

• Description: Get one of the blocks tagged with ID

• Arguments:

o ID The target ID. See ID Meaning above for details.

o index The index of blocks, which is ordered by the received sequence. It

should less than countBlocks(ID)

• Returns: block tagged with ID in struct HUSKYLENSResult. See

HUSKYLENSResult above for details.

HUSKYLENSResult getArrow(int16_t index)

• Description: Get one of the arrows.

• Arguments:

o index The index of arrows, which is ordered by the received sequence. It

should less than countArrows()

• Returns: arrow in struct HUSKYLENSResult. See HUSKYLENSResult above for

details.

HUSKYLENSResult getArrow(int16_t ID, int16_t

index)

• Description: Get one of the arrows tagged with ID

• Arguments:

o ID The target ID. See ID Meaning above for details.

o index The index of arrow, which is ordered by the received sequence. It

should less than countArrows(ID)

• Returns: arrow tagged with ID in struct HUSKYLENSResult. See

HUSKYLENSResult above for details.

HUSKYLENSResult getLearned(int16_t index)

• Description: Get one of the learned blocks and arrows (ID >=1)

• Arguments:

o index The index of blocks and arrows, which is ordered by the received

sequence. It should less than countLearned()

• Returns: block or arrow in struct HUSKYLENSResult. See HUSKYLENSResult

above for details.

HUSKYLENSResult getBlockLearned(int16_t index)

• Description: Get one of the learned blocks (ID >=1)

• Arguments:

o index The index of blocks, which is ordered by the received sequence. It

should less than countBlocksLearned()

• Returns: block in struct HUSKYLENSResult. See HUSKYLENSResult above for

details.

HUSKYLENSResult getArrowLearned(int16_t index)

• Description: Get one of the learned arrows (ID >=1)

• Arguments:

o index The index of arrows, which is ordered by the received sequence. It

should less than countArrowsLearned()

• Returns: arrow in struct HUSKYLENSResult. See HUSKYLENSResult above for

details.

bool writeAlgorithm(protocolAlgorithm

algorithmType)

• Description: Let HUSKYLENS switch to the target algorithm you need.

• Arguments:

o algorithmType The target algorithm. See protocolAlgorithm for details.

• Returns: Whether success.

bool writeLearn(int ID)

• Description: Let HUSKYLENS learn with ID. (It only works in Object

Classification)

• Arguments:

o ID The target ID. See ID Meaning above for details.

• Returns: Whether success.

bool writeForget()

• Description: Let HUSKYLENS forget all. (It only works in Object Classification)

• Returns: Whether success.

bool setCustomName(String name,uint8_t id)

• Description: Set a custom name for a learned object with a specified ID. For

example, if you have learned your face with an ID of 1, you can use

setCustomName("Robert",1) to rename the learned face to "Robert".

• Arguments:

o name The specified custom name

o id The ID of the object you want to set the custom name for

• Returns: Whether success.

bool savePictureToSDCard()

• Description: Save a photo from the HuskyLens camera onto the SD Card.

• Returns: Whether success. If there is no SD Card inserted or an SD Card Error,

there will be a UI popup on the HuskyLens outlining the issue.

bool saveScreenshotToSDCard()

• Description: Save a screenshot of the HuskyLens UI onto the SD Card.

• Returns: Whether success.

bool saveModelToSDCard(int fileNum)

• Description: Save the current algorithms model file (its learned object data) to

the SD Card. The file will be the in the format

"AlgorithimName_Backup_FileNum.conf"

• Arguments:

o fileNum The specified file number to be used in the name for the file

• Returns: Whether success. If there is no SD Card inserted or an SD Card Error,

there will be a UI popup on the HuskyLens outlining the issue.

bool loadModelFromSDCard(int fileNum)

• Description: Load a model file from the SD Card to the current algorithm and

refresh the algorithm. The loaded file will be the following format

"AlgorithimName_Backup_FileNum.conf"

• Arguments:

o fileNum The specified file number to be used in the name for the file

• Returns: Whether success. If there is no SD Card inserted or an SD Card Error,

there will be a UI popup on the HuskyLens outlining the issue.

bool customText(String text,uint16_t x,uint8_t y)

• Description: Place a string of text (less than 20 characters) on top of the

HuskyLens UI. The position of the texts (X,Y) coordinate is the top left of the

text box.

o You can have at most 10 custom texts on the UI at once, and if you

continue adding texts you will replace previous texts in a circular

fashion. For example, if you enter 10 texts you will fill the text buffer. If

you then insert a new text object, you will overwrite the first text

position (textBuffer[0]). Inserting another new text object will overwrite

the second text position (textBuffer[1]).

o Each text is uniquely identified by its (X,Y) coordinate, so you can

replace the text string at a (X,Y) coordinate instead of adding a new text

object. For example, if you insert "TEST_1" at (120,120) and then later

submit "TEST_2" at (120,120), you will replace the string "TEST_1" with

"TEST_2" and maintain an overall text count of 1.

• Arguments:

o text The specified text you wish to enter on the screen

o x The X coordinate for the UI Object (0-320)

o y The Y coordinate for the UI Object (0-240)

• Returns: Whether success.

bool clearCustomText()

• Description: Clear and delete all custom UI texts from the screen.

• Returns: Whether success.

bool isPro()

• Description: Detect whether the HuskyLens is a Pro or Standard Model

• Returns: True is Pro Model, False if Standard

bool checkFirmwareVersion()

• Description: Check if the onboard firmware is out of date. If it is an old

firmware, there will be a UI message that pops up on the screen

• Returns: Whether success.

